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Nowadays, modern power networks have to face a number of challenges such as growing electricity
demand, aging utility infrastructure and not to forget the environmental impact of the greenhouse gases
produced by conventional electric generation. In order to increase renewable energy penetration but
without disregarding security and reliability matters during the process, distribution power networks
need to evolve to a flexible power network, better known as smart grid, in which distributed intelligence,
communication technologies and automated control systems work as the driving factors. Taking into con-
sideration this new frame, intelligent optimization techniques emerge as the only suitable way to opti-
mally design this smart grid. In this paper, a generalized optimization formulation is introduced to
determine the optimal location of distributed generators to offer reactive power capability. In order to
find a suitable solution to such Reactive Power Management problem, genetic algorithms are applied
in those cases where different multiobjective functions are to be considered. A more detailed description
of the genetic algorithm evolution process is shown in a microgrid example.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In the last decade, technological evolution and changes in the
regulatory and economic environment of the power systems have
led to an increasing interest in the use of distributed generation
units (DG), considered as small generators units connected to distri-
bution grids (Jenkins, 2000). However, the fact is that power system
operators and planners still have to face to the great challenge of
integrating this kind of renewable energy sources into power system
grids. One of the critical issues arisen out of this context is the Reac-
tive Power Management (RPM) which entails the requested opera-
tion and planning actions to be implemented in order to improve
both, the voltage profile and the voltage stability (Miller, 1982).
Moreover, Reactive Power Management involves the definition of
the Reactive Power Planning of VAR sources and the reactive power
dispatch of the already installed reactive sources. Lately, and in an
attempt to fill the existing gap, Flexible AC Transmission Systems
(FACTS) devices have stood out as a feasible option to improve volt-
age stability by influencing power flows and by improving voltage
profiles (Lahatani, Aouzellag, & Mendil, 2010). To reach the optimum
application of these devices, it is crucial to find out the optimal loca-
tion, in which their influence would be more useful as well as to
determinate their optimum sizing.
ll rights reserved.
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Recently there has been a general upsurge of interest in the con-
cept of smart grids and thus, they are being considered as flexible
network, intelligent network or even active power network with a
great potential to promote and to increase the renewable energy
sources integration. At the same time, they are able to improve sys-
tem reliability and security. This change requires getting a new
perspective on network operating, in which the intelligence must
be spread over DG units and FACTS devices, such as Static Var Com-
pensators (SVC) and therefore the distribution power network be-
comes flexible. Active power networks allow the implementation
of an efficient Reactive Power Planning in which the optimum
VAR sources location is chosen during the planning stage and, act-
ing this way, an efficient reactive power dispatch could be also
achieved by scheduling an optimum regulation of the voltage set
point at the generators connection point and at the VAR settings
during the reactive power dispatch (Xiong, Cheng, & Li, 2008).

Traditionally, Reactive Power Planning has been formulated as
an optimization problem in which the determination of the instan-
taneous optimal steady state of an electric power system is solved
by an Optimal Power Flow problem (OPF) (Raoufi & Kalantar,
2009). In those situations, the optimization algorithm is defined
as a single objective function expressed as a mathematical function
based on some criteria. In many cases, the main objective is to min-
imize the fuel cost function and/or the possible system losses.

At this point, the use of heuristic optimization algorithms
stands out as the only suitable way to design and to optimally lo-
cate reactive power injection units in smart grids considering, at
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Fig. 1. Static Var Compensator diagram.
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the same time, different objectives function such as: improving the
voltage stability, maximizing the renewable energy penetration
and controlling the network in a coordinated way as it is proposed
in this paper.

The objective of the paper is to develop a new Reactive Power
Management Strategy for the coordinated handling of reactive
power from DG units and FACTS units by applying evolutionary
optimization methodologies such as genetic algorithms. The pro-
posed methodology will aid power system operators to determine
which is the optimal placement for locating DG units and SVCs de-
vices and which is the amount of reactive power that should be in-
jected in the network to improve the voltage stability maximizing,
at the same time, the DG penetration level. The optimization for-
mulation proposed in the paper focuses on Static Var Compensator
(SVC). However, it should be emphasized that the developed meth-
od could also be applied to any other controllable FACTS devices
such as STATCOM as well as to include any other objective function
in the multiobjective algorithm.

The content of the paper is organized as follows: Section 2
shows a brief summary of reactive power capabilities from DG
units. In Section 3 the Reactive Power Planning formulation is de-
scribed. A description of the single objective genetic algorithm is
shown in Section 4. The GA evolution process is described one
stage at a time in Section 5 and the proposed methodology is ap-
plied to a 34-bus distribution network in which several DG units
with reactive power capabilities are optimally located in Section
6. Concluding remarks are presented in Section 7.

2. Reactive power injection from DG sources

One of the technical barriers for the integration of Renewable
Energy Sources (RES) in distribution networks is the exceeding
voltage limit violations. Active networks or smart grids require a
dynamic reactive power support to the network in order to offer
voltage control and reactive power regulation. This could be possi-
ble by monitoring the network and by sending signals to the con-
trolled DG generators and FACTS devices such as SVCs.

Fuel cells, photovoltaic systems and small wind turbines are
examples of controlled DG units that are connected to the network
through static power converters. Models of DG generation sources
has been thoroughly investigated by several researchers (Emino-
glu, 2009; Hajizadeh & Golkar, 2010 & Suroso & Noguchi, 2010)
and all of them have come to the conclusion that the reactive
power regulation capability could be easily obtained by controlling
the power electronic converter.

It could be considered that active power output from the con-
trolled DG unit, P, will depend, in each situation, on the available
weather resource and the DG technical characteristics (Vilar
Moreno, Amaris Duarte, & Usaola Garcia, 2002). On the contrary,
reactive power output, QGSC, will be restricted by the active power
injected to the grid and by the rating of the coupling power con-
verter SGSC and thus could be expressed as:

Q GSC ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

GSC � P2
q

ð1Þ

For the uncontrolled DG such as: diesel generators and Combined
Heat and Power (CHP) units, which do not offer the reactive power
regulation capabilities, it would be necessary to add an external dy-
namic reactive power support, such as a Static Var Compensator
(SVC) at the Point of Common coupling (PCC) or DG terminals.

A Static Var Compensation (SVC) is a device capable of exchang-
ing capacitive as well as inductive current to maintain or to control
specific parameters of the electrical power system. In this paper,
the considered SVC corresponds to a TCR (Thyristor Controlled
Reactor) as shown in Fig. 1.

In this situation, injected steady-state current is expressed thus:
I ¼
U
XL
ðcosasvc � cosxtÞ; asvc 6 xt < asvc þ r

0; asvc þ r 6 xt < asvc þ p

(
ð2Þ

where: U voltage at SVC connection point, it is the voltage that it is
being controlled; XL total inductance; Xc capacitor; asvc is the firing
delay angle; r is defined as the SVC conduction angle according to:

r ¼ 2ðp� asvcÞ ð3Þ

Following Fourier (Miller, 1982), the variable susceptance Bsvc

could be expressed as:

BsvcðasvcÞ ¼
2p� asvc þ sin 2asvc

pXL
ð4Þ

and the reactive power injected by the SVC, which corresponds to
the reactive power injected by the uncontrolled DG at the connec-
tion point is:

QsvcðasvcÞ ¼
U2

Xc
� U2BsvcðasvcÞ ð5Þ
3. Reactive Power Planning formulation

Reactive Power Planning (RPP) is a large-scale, mixed, non-lin-
ear, constrained, optimization problem that could be defined as:

min
x2Rn

f ðx;uÞ

subject to
gðx;uÞ ¼ 0
hðx;uÞ 6 0

� ð6Þ

where:
u are the control variables; x�Rn stands for all the system steady

state variables; f (x,u) objective function to minimize; g(x,u) in-
volves the equality constraints; h(x,u) corresponds to the inequal-
ity constraints.

3.1. Objective function

By the process of formulating a Reactive Power Planning prob-
lem, the choice of objective functions represents the most relevant
decision to be made. In fact, many different single objective func-
tions have been already proposed by various authors; Hugang
(2008); Hedayati, Nabaviniaki, and Akbarimajd (2008) and Lee
and Bai (1995).

Among the numerous available choices in this paper, the fol-
lowing objective function will be considered:

3.1.1. Single objective function
The main factor that tends to cause voltage instability is the

inability of a power system to maintain an adequate Reactive
Power Management in the network and a proper voltage level
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(Ajjarapu, 2006). In most of the cases, the load works as driving
force of voltage instability and that is why the algorithm tries to
maximize the loadability factor taking into account the minimum
voltage allowable limit (normally Umin = 5%UN) according to the
utilities grid voltage regulations.

In this situation the load change scenarios, PD and QD could be
modified as:

PD ¼ PD0ð1þ kÞ ð7Þ
Q D ¼ Q D0ð1þ kÞ ð8Þ

where:
PD0,QD0 original load, base case; k loadability parameter.
Voltage stability is usually studied by a P–V diagram (Ajjarapu,

2006) as shown in Fig. 2. Loads in all buses are increased propor-
tional to their initial load levels and the generators outputs are in-
creased proportional to their initial generations too. The turning
point where the load parameter becomes tangent to the network
characteristic would be defined as the Point of Collapse (PoC), at
this point k = kcritical. In the same way, if a load increase beyond this
critical value takes place, an unstable equilibrium will arise and
consequently the system would be unable to operate any longer.
For all the reason above mentioned, in this case, the objective func-
tion tries to maximize the loadability parameter considering the
minimum allowed voltage value according to the utility regula-
tions (Umin,klimit).
3.1.2. Multiobjective function
Traditionally, optimization problems related to multiple objec-

tives had been solved by means of the linear programming, where
one of the objectives was optimized and the others were included
in the restrictions. This procedure generates some disadvantages
such as:

� Objectives representation by means of restrictions in linear pro-
gramming could lead to unfeasible problems.
� If the optimization is to be applied in a large system, it will be dif-

ficult to find out the restriction that produces the unfeasibility.
� There is not a clear criterion for choosing the suitable objective

function and, in many cases, the fulfilment of one single objec-
tive could come into conflict with the others.

Multiobjectives algorithms stand out as a procedure to solve
these above mentioned problems where the optimal solution of
the problem is to be replaced by a set of efficient solutions.

In this section, a multiobjective function is defined as a loada-
bility function of the system and the DG penetration level. Multi-
objective approach is defined as:

min FðyÞ ¼ af ðyÞ þ bgðyÞ ð9Þ

where:
{f,g} set of the variables to be satisfied; f (y) maximize voltage

stability; g(y) minimize DG penetration level; a and b weight
parameters.
Fig. 2. Voltage loadability.
Parameters a and b could be selected in order to determinate
the rate of the mono-objective functions. In this paper, it is as-
sumed that the weight of the individuals objective are equal, so
that a and b are selected as 1

2.

3.2. Constraints

3.2.1. Equality constraints
Basic equality constraints correspond to the power flow equa-

tions in every buses.
The power mismatch equations in rectangular coordinates at a

bus are given by:

DPi ¼ Pgi � Pdi � Pi ð10Þ
DQi ¼ Q gi � Q di � Q i ð11Þ

where Pgi and Qgi are real and reactive powers of generator at bus i,
respectively; Pdi and Qdi the real and reactive load powers, respec-
tively; Pi and Qi the power injections at the node are given by:

Pi ¼ Ui

XN

j¼1

UjðGijcoshij þ BijsenhijÞ ð12Þ

Qi ¼ Ui

XN

j¼1

UjðGijsenhij � BijcoshijÞ ð13Þ
3.2.2. Inequality constraints
Inequality constraints constitute the physical limits of the com-

ponents or operational constraints in the system.

� Voltage limits at buses
Voltage level at buses are not allowed to fall outside the maxi-
mum and minimum values according to grid voltage
regulations.
Ui;min 6 Ui 6 Ui;max ð14Þ
� Limits of the loadability factor
Lambda is the loading factor by which the load is increased at
all buses and k P 0.
� Limits of the DG power injection

Active power output is restricted by lower and upper limits.
Pgi;min 6 Pgi 6 Pgi;max ð15Þ
where Pgi,min, Pgi,max are the minimum and maximum operating
power respectively. In the case of reactive power, it has to be
noted that there are two groups of DG units: the controlled DG
and the uncontrolled DG. For the controlled DG, reactive power
output is restricted by lower and upper limits, considering in each
situation the active power injected to the grid and the rating of
the coupling power converter of the controlled DG generators as
it is shown in (1).
For the uncontrolled DG, the reactive power (5) is restricted by the
maximum and minimum reactive power limits of the SVCs.
� Physical constraints in the DG connection point The potential

connection point from the DG to the grid is limited to the geo-
graphical area in which the available renewable resource is
higher.
BusLocDGi ;min 6 BusLocDGi
6 BusLocDGi ;max ð16Þ
4. Genetic algorithms

The application of Evolutionary Algorithm like genetic algo-
rithms (GA) in multiobjective optimization problems has received
considerable attention in the last years due to the difficulty of
extending conventional optimization techniques to multiobjective



Table 1
Chromosome structure.

Stability DG + SVC

DG1 + SVC1 . . . DGN + SVCN

k Loc Q . . . Loc Q

Fig. 3. Optimization process.

Fig. 4. Four bus microgrid.

Table 2
Initial population of the 4 bus system.

k (p.u.) BusDG QDG (Mvar)

Chromosome 1 0.13205 2 149.537
Chromosome 2 0.69965 2 187.455
Chromosome 3 0.4859 2 233.818
Chromosome 4 0.18272 3 209.539
Chromosome 5 0.10121 3 221.811

Table 3
Evaluation process of 4 bus system.

FF(y) F(y) Order Range

Chromosome 1 0 1 3 0.557
Chromosome 2 0 1 4 0.35
Chromosome 3 0 1 5 0.407
Chromosome 4 0.18272 0.8173 1 1
Chromosome 5 0.10121 0.8988 2 0.707
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optimization problems (Singh & Singh, 2009). Genetic algorithms
(GA) belong to the evolutionary optimization algorithms and they
were firstly introduced by Holland in 1975 (Holland, 1975). Start-
ing with an initial population, the algorithm evolves to a new gen-
eration of individuals by means of executing reproduction,
mutation and crossover operations among the individuals of this
population. The main advantages offered by GA over conventional
optimization algorithms are:

� GA’s do not need initial information about the system to begin
the searching process since they work only with the coding
(chromosomes) which will be optimized according to the objec-
tive functions and the proper constraints.
� The algorithms would be able to explore simultaneously various

regions in the search space by using multiple points of the pop-
ulation and iterative characteristics. This represents one of the
most important distinctions from the traditional optimization
algorithms where only one direction in the search space could
be followed.
� Best individuals are selected among parents and offspring gen-

eration making the process more likely to converge to a global
minimum.
Fig. 5. Cumulative fre
4.1. Encoding

The genetic information of each individual is encoded in its
chromosome (Table 1) which is a string of real numbers that corre-
sponds to:

� Bus location.
� Reactive power injected.
� Loadability factor.

If there are n DG units the chromosome length will have:

� 2n genes: bus location and reactive power injected by DG unit,
� 1 gene: optimal loadability factor.

Active power injected by each micro-generator is not included
in the chromosome since it is assumed that active power from
quency diagram.



Table 4
Cumulative frequency of 4 bus system.

Range Frequency Cumulative freq.

Chromosome 1 0.557 0.1787 0.1787
Chromosome 2 0.5 0.1547 0.3333
Chromosome 3 0.407 0.1384 0.4718
Chromosome 4 1 0.3094 0.7812
Chromosome 5 0.707 0.2188 1

Table 5
Selection process of the 4 bus system.

Cumulative freq. r Father

Chromosome 1 0.1787 0.8631 5
Chromosome 2 0.3333 0.3807 3
Chromosome 3 0.4718 0.749 4
Chromosome 4 0.7812 0.1567 1
Chromosome 5 1 0.0581 1

Table 6
Parents of the selection process of the 4 bus system.

k (p.u.) BusSVC QSVC(Mvar)

Chromosome 5 0.10121 3 221.811 Crossover process
Chromosome 4 0.18272 3 209.539
Chromosome 1 0.13205 2 149.537
Chromosome 3 0.48590 2 233.818

Chromosome 1 0.13205 2 149.537 Mutation process

Table 7
First couple of parents.

k (p.u.) BusSVC QSVC(Mvar)

First couple of parents
Chromosome 5 0.10121 3 221.811
Chromosome 4 0.18272 3 209.539

Table 8
Second couple of parents.

k (p.u.) BusSVC QSVC (Mvar)

Second couple of parents
Chromosome 1 0.13205 2 149.537
Chromosome 3 0.48590 2 233.818

Table 9
Evolution of the crossover process.

Parents Children

k (p.u.) BusSVC QSVC

(Mvar)
k (p.u.) BusSVC QSVC

(Mvar)

Chromosome 5 0.10121 3 221.811 0.10121 3 209.539 Child 1
Chromosome 4 0.18272 3 209.539

Chromosome 1 0.13205 2 149.537 0.13205 2 233.818 Child 2
Chromosome 3 0.48590 2 233.818

Table 10
Mutation process of the 4 bus system.

Parent m Child

k (p.u.) BusSVC QSVC (Mvar) k (p.u.) BusSVC QSVC (Mvar)

0.13205 2 149.537 0.05 0.89842 3 151.358

Table 11
New population of the 4 bus system.

Genetic operator k (p.u.) BusSVC QSVC (Mvar)

Population1 Elitism children 0.18271625 3 209.539142
0.10121454 3 221.810899

Crossover children 0.10121454 3 209.539142
0.13205468 2 233.817557

Mutation child 0.89842469 3 151.358383
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DG is merely a piece of information previously known according to
the weather and power production forecasts.
4.2. Evaluation

The Fitness Function (FF) assigns a goodness value at each indi-
vidual of the population and it is employed to drive the evolution
process. Each chromosome is assigned a fitness value which deter-
mines not only the individual adaptation capacity to the environ-
ment but also its estimated survival probability in the following
generation. In this study the FF is assigned to be the Loadability
parameter k.
4.3. Selection

The individuals that score the largest fitness values are selected
as possible parents because of the fact that they have higher
likelihood of survival. So that, the larger the chromosomes fitness,
the higher the survival probability in the next generation.
Therefore, a roulette wheel selection is used to distinguish which
are the best individuals (parents) to be reproduced.

4.4. Crossover

The method employs a one-point crossover operation. Thus,
after arbitrarily selecting the two chromosome parents the method
can arbitrarily choose one crossover point for creating new off-
spring chromosomes.

4.5. Mutation

The ultimate aim pursued by the mutation operator is to intro-
duce variety in the population. So that, this operator selects arbi-
trarily individuals from the population and alters some of its
characteristics. In this case the mutation operation is achieved
with a small probability after crossover and it creates new individ-
uals whose information was not included in previous generations
yet.

The complete optimization process is shown in Fig. 3.

5. Example

Considering the system in Fig. 4, it illustrates a four bus micro
grid with one load on each node. Total active and reactive load of
the system is 500 MW and 309.86 Mvar respectively. This micro
grid has a tie line to the local utility, slack bus, at bus number 4
too. The objective to be pursued is to connect a SVC unit, with a
maximum rate of 250 Mvar, in the optimum node in order to



Table 12
Evolution of the population of the 4 bus system.

k (p.u.) BusSVC QSVC (Mvar) F

P0 0.1321 2 149.54 1
0.6997 2 187.46 1
0.4859 2 233.82 1
0.1827 3 209.54 0.8173
0.1012 3 221.81 0.8988

P1 Elitism 0.1827 3 209.54 0.8173
0.1012 3 221.81 0.8988

Crossover 0.1012 3 209.54 0.8988
0.1321 2 233.82 1

Mutation 0.8984 3 151.36 1

P2 Elitism 0.1827 3 209.54 0.8173
0.1012 3 221.81 0.8988

Crossover 0.1827 3 209.54 0.8173
0.1012 3 151.36 0.8988

Mutation 0.1329 3 213.05 0.8671

P3 Elitism 0.1827 3 209.54 0.8173
0.1827 3 209.54 0.8173

Crossover 0.1329 3 213.05 0.8671
0.1827 3 209.54 0.8173

Mutation 0.8291 3 135.23 1

P4 Elitism 0.1827 3 209.54 0.8173
0.1827 3 209.54 0.8173

Crossover 0.1827 3 209.54 0.8173
0.1827 3 209.54 0.8173

Mutation 0.7937 3 155.33 1

. . . . . . . . . . . .

. . . . . . . . . . . .

P10 Elitism 0.204 3 282.95 0.7958
0.204 3 282.95 0.7958

Crossover 0.1827 3 282.95 0.8173
0.204 3 209.54 0.8173

Mutation 0.5526 2 180.46 1

Best individual 0.204 3 282.95 0.7958

1 2 3 4 5 6
7 8 9
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11 12
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16
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29
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23 24 25 26 27

31

32

33

34

Grid

Fig. 6. 34 -Bus distribution network.

Table 13
Solution of the GA.

Case klim. (p.u.) BusSVC QSVC (Mvar)

1 Without GD 0 – –
2 One GD and one SVC 0.06 27 2.77
3 Two GD and two SVC 0.3 11 2.95

25 2.79
4 Three GD and three SVC 0.74 10 2.15

23 2.45
26 2.71
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maximize the loadability of the system (17) without exceeding an
admissible margin of 5% around nominal voltage supply (230 kV)
as it is stated in the utility regulations.

5.1. Initial population

The first step in the implementation of the GA is to generate the
initial population. There are several methods to obtain this popula-
tion. In this case, and taking into account the limits of the different
variables of the system, the randomize option has been selected as
the most suitable one. For the example given, population is com-
posed by five individuals with three genes each one, that corre-
spond to the loading parameter, the DG bus allocation and the
reactive power injection respectively.

Table 2 shows the initial population. It could be observed that
individual #1 corresponds to the chromosome 1 that will locate
the DG unit in bus number 2, with a reactive power injection of
149.537 Mvar and with a loadalibility factor of 13.2%. The loadabil-
ity parameter represents the systems overload, having in mind the
initial loading condition.
5.2. Evaluation

The evaluation process assigns a fitness value to each individual
of the population in terms of the Fitness Function FF(y) = k, (see
columns two and three of Table 3) according to the objective func-
tion (17). After finishing the evaluation process, a scaling process is
applied to the individuals of the population by using the range
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operation (18). The best individual of the population, which has
bigger fitness value (FF), will be assigned the top range value of
one.

min FðyÞ ¼ ð1� FFðyÞÞ ð17Þ

range ¼ 1ffiffi
i
p ð18Þ
Table 14
Maximum loadability and penetration level.

klim. (p.u.) % Penetration

0.62235 70.09
5.3. Selection

Selection operator is applied to the population in order to obtain
the group of parents. In this paper, the roulette method is used. The
first step in the selection process is to determinate the frequency of
each individual in terms of their ranges. After that, the cumulative
frequency of each individual is calculated (Table 4) taking into ac-
count that it represents the probability of each individual and could
be shown in a circle diagram (Fig. 5).

Once the cumulative frequency of each chromosome has been
calculated, a random number r (between 0 and 1) is associated to



Table 15
Solution of the GA.

Loc,1 P1 (MW) Q1 (Mvar) Loc,2 P2 (MW) Q2 (Mvar) Loc,3 P3 (MW) Q3 (Mvar) Loc,4 P4 (MW) Q4 (Mvar)

10 1.49 1.8 25 1.5 1.72 21 1.44 1.94 22 1.42 2

Table A.1
Loads data of 34 bus system.

Bus Pd (MW) Qd (Mvar)

1 0 0
2 0.23 0.1425
3 0 0
4 0.23 0.1425
5 0.23 0.1425
6 0 0
7 0 0
8 0.23 0.1425
9 0.23 0.1425
10 0 0
11 0.23 0.1425
12 0.137 0.084
13 0.072 0.045
14 0.072 0.045
15 0.072 0.045
16 0.0135 0.075
17 0.23 0.1425
18 0.23 0.1425
19 0.23 0.1425
20 0.23 0.1425
21 0.23 0.1425
22 0.23 0.1425
23 0.23 0.1425
24 0.23 0.1425
25 0.23 0.1425
26 0.23 0.1425
27 0.137 0.085
28 0.075 0.048
29 0.075 0.048
30 0.075 0.048
31 0.057 0.0345
32 0.057 0.0345
33 0.057 0.0345
34 0.057 0.0345

Table A
Lines data of 34 bus system.

From bus To bus R (p.u.) X (p.u.)

1 2 0.0813 0.0333
2 3 0.0743 0.0306
3 4 0.1142 0.0319
4 5 0.1038 0.0288
5 6 0.1038 0.0288
6 7 0.2181 0.0375
7 8 0.1458 0.025
8 9 0.2181 0.0375
9 10 0.1458 0.025
10 11 0.091 0.0156
11 12 0.0729 0.0125
3 13 0.1092 0.0188
13 14 0.1458 0.025
14 15 0.0729 0.0125
15 16 0.0361 0.0063
6 17 0.1243 0.0347
17 18 0.1139 0.0319
18 19 0.1444 0.0328
19 20 0.1313 0.0299
20 21 0.1313 0.0299
21 22 0.1819 0.0313
22 23 0.1819 0.0313
23 24 0.2181 0.0375
24 25 0.1458 0.025
25 26 0.091 0.0153
26 27 0.0729 0.0125
7 28 0.1092 0.0188
28 29 0.1092 0.0188
29 30 0.1092 0.0188
10 31 0.1092 0.0188
31 32 0.1458 0.025
32 33 0.1092 0.0188
33 34 0.0729 0.0125
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each individual of the population. In the given example, parents
groups are formed by five individuals, so that, five random
numbers are chosen (column r of Table 5). The selection of each
parent depends not only on the random number, r, but also on
the cumulative frequency. For each chromosome, its selected par-
ent is the one whose cumulative frequency is immediately above
to its random number r. In Table 5, it could be seen that for chro-
mosome 1, which has a random number r = 0.8631, the parent se-
lected is the one whose cumulative frequency is superior to r,
which corresponds to chromosome number 5.

Once the fathers are selected, a random reorganization of the
parents is made in order to increase the randomness of the whole
process (Table 6). As far as this study is concerned, parents in-
volved in the crossover process are the first four, and the rest are
reserved for the mutation process.

5.4. Crossover operation

This operator obtains a new individual from a couple of parents.
The first step in the crossover process is to select a couple of par-
ents and a random point to perform the crossover operations. In
the example, the selected couple of parents are the two first indi-
viduals, chromosomes 5 and 4, and the selected crossover point
is located between genes 1 and 2; so that, a new offspring
individual could be created copying gene 1 from the individual 5
and genes 2 and 3 from the individual 4 (Table 7). For the second
couple of parents, the random point to perform the crossover oper-
ations is located between genes 2 and 3, and thus the new offspring
is created by copying genes 1 and 2 from the individual 1 and gene
3 from individual 3 (Table 8). The final solution is shown in Table 9.
5.5. Mutation

Mutation process incorporates new information in the evolu-
tion process. To simplify the case study, in the example high muta-
tion rate has been chosen (pm = 0.5). At the beginning of the
mutation process a random number m between 0 and 1 is assigned
to individuals that participate in the mutation process. In the stud-
ied case will be chromosome #1. After that, mutation rate is com-
pared with the random number of each individual; if the random
number is lower, all genes of the individual will mutate.

Table 10 shows the mutation process of the example. Parent
population is made of five individuals; four of them are used in
the crossover process, and thus, only one parent is used in the
mutation process which corresponds to individual number 1. The
random number m, associated to individual #1, is 0.05, lower than
the mutation rate (pm = 0.5), so that, all genes of the individual will
mutate and a new offspring will be born.
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Fig. 9. Voltage profile of the 34 bus system for the multiobjective study.
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5.6. New population

After the application of the evaluation, selection, crossover and
mutation process, a new population is created. This new
population (Table 11) is formed by two individuals obtained by
the crossover operation, one for the mutation process, and the
other two individuals are the result of applying a new operator
called elitism. In that case, elitism operator selects the two individ-
uals of the population which have obtained the top fitness value
across the evolution process. In the studied example, the two indi-
viduals selected by the elitism process are chromosomes #4 and
#5 which are included in the new population.

5.7. Final solution

As it could be observed in the flowchart of Fig. 3, this evolution
process is applied till one solution has been found or one of the
stop parameters have been reached. The most common considered
stop criteria is to reach the limit of the maximum allowable gener-
ations or to reach the convergence tolerance between two consec-
utive populations. Table 12 shows the evolution process of the
example.

It could be remarked that the optimal final solution consists in
adding one DG unit at bus number 3 with a reactive power capabil-
ity of 282.95 Mvar and thus, increasing the loadability of the sys-
tem in a 20%.

6. Application case

In this case, the proposed methodology is applied to a distribu-
tion network (Fig. 6) composed by 34 buses (details are included in
the appendix). The aim of the optimization methodology is to opti-
mally locate several DG sources that offer reactive power capability
spread over the network.

The chromosome length depends on the number of DG units, n,
to be located and it will have (1 + 2 � n) genes.

6.1. Maximizing the voltage stability

In order to maximize the power system loadability, the objec-
tive function is defined by (17), and the constraints of the problem
are the ones defined in Section 3.2.
Table 13 shows the solution proposed by the GA. It could be
pointed out that the voltage stability improves as the number of
DG units connected to the grid increases too. In the case of adding
three DG units, the voltage stability increases up to 74%. Moreover,
it could be observed, that the optimal bus location for the connec-
tion of the DG units is quite close in the network, in spite of the fact
that it depends on the number on units connected to the system.

Fig. 7 shows the voltage profile for the different simulations. It
could be highlighted that the incorporation of several DG units
with reactive power capability improves the voltage profile of
the power systems by smoothing it.

Finally, Fig. 8 shows the voltage stability P–V curves of the dif-
ferent cases. It could be remarked that as the penetration level of
DG increases the loadability and the distance to the point of col-
lapse of the system increases too. So, as a conclusion, it could be
stated that the incorporation of the DG units in power systems im-
proves voltage stability.

6.2. A multiobjective approach: to increase voltage stability by
maximizing the DG penetration level

In this study, the main objective of the proposed methodology
applied to the 34 buses network is to determine the optimal allo-
cation of four DG units and, at the same time, to calculate their ac-
tive and reactive power injection in order to maximize the voltage
loadability of the system as well as to increase the DG penetration
level. In this case, a multiobjective function that incorporates both
single objectives is used as follows:

min FðyÞ ¼ 1
2
ð1� f ðyÞÞ þ 1

2
1

gðyÞ

� �
ð19Þ

where:

f(y) = k, optimize loading parameter.

gðyÞ ¼
Pn

i¼1
PGDi

Pload
, represents penetration level.

Tables 14 and 15 show the results of the GA. It could be ob-
served that the maximum power system loadability corresponds
to an overload of 62.2% with a maximum penetration level of
70.09%. This condition is reached when one DG unit is connected
at bus number 10 with an active and reactive power injection of
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1.49 MW and 1.8 Mvar respectively (Table 15); the second DG unit
is connected at bus # 25 with an active and reactive power injec-
tion of 1.5 MW and 1.72 Mvar; the third DG unit is connected at
bus number 21 and injects 1.44 MW and 1.94 Mvar of active and
reactive power respectively, and the last DG unit is connected at
bus # 22 and injects 1.42 MW of active power and 2 Mvar of reac-
tive power.

Fig. 9 represents the voltage profile of the power systems in the
original situation (base case, without DG), and in the case of incor-
porating four DG units at their optimal allocation without increas-
ing the load (dash-dot line) as well as in the case of the maximum
loadability (solid line, overload of 62.2%).
7. Conclusions

The proposed strategy finds out the optimal location of DG units
and the optimal reactive power injection in order to improve both,
the voltage stability of the system and the DG penetration level. In
the optimization algorithm two groups are considered for the dis-
tributed generators: on the one hand the controlled DG, which are
those coupled to the network through a power converter and, on
the other hand, the uncontrolled DG which corresponds to gener-
ators that are connected to the grid by synchronous or induction
generators. A step-to-step description of the evolutionary process
has been detailed in a four bus power system in order to gain
understanding of how GA works. Finally, the optimization process
has been applied to a 34-bus distribution active power network
where the DG units with reactive power capability are optimally
located by applying single objective function and multiobjective
function.

Genetic algorithm has been proved to be a good method to solve
large scale, combinatorial optimization problem, such as reactive
power planning in order to increase the DG penetration level at
distribution networks increasing, at the same time, the voltage sta-
bility. This formulation could very useful for the utility planners
and operators, and whatever other situations where reactive
power reserve would be needed. The proposed methodology opens
up several new possibilities in this field to operate and to design
power networks with distributed generation.
Acknowledgements

This work has been partially supported by the Spanish Minister
of Science and Innovation under contract ENE2009-13883-CO2-01.

Appendix A

Loads and lines data of the 34 bus system Tables A.1 and A.

References

Ajjarapu, V. (2006). Computational techniques for voltage stability assessment and
control. Springer.

Eminoglu, U. (2009). Modeling and application of wind turbine generating system
(WTGS) to distribution systems. Renewable Energy, 34, 2474–2483.

Hajizadeh, A., & Golkar, M. A. (2010). Intelligent robust control of hybrid distributed
generation system under voltage sag. Expert Systems with Applications, 37,
7627–7638.

Hedayati, H., Nabaviniaki, S. A., & Akbarimajd, A. (2008). A method for placement of
DG units in distribution networks. IEEE Transactions on Power Delivery,
1620–1628.

Holland, J. (1975). Adaptation in natural and artificial systems: An introductory
analysis with applications to biology, control, and artificial intelligence. Univ. of
Michigan Press.

Hugang, C. L. H. X. (2008). Optimal reactive power flow incorporating static voltage
stability based on multi-objective adaptive immune algorithm. Energy
Conversion and Management, 1175–1181.

Jenkins, N. (2000). Embedded generation. Institution of Electrical Engineers.
Lahatani, N., Aouzellag, D., & Mendil, B. (2010). Contribution to the improvement of

voltage profile in electrical network with wind generator using SVC device.
Renewable Energy, 35(1), 243–248.

Lee, Y. K. Y., & Bai, X. (1995). Park optimization method for reactive power planning
by using a modified simple genetic algorithm. IEEE Transactions on Power
Systems, 1843–1850.

Miller, T. J. E. (1982). Reactive power control in electric systems. Wiley Interscience.
Raoufi, H., & Kalantar, M. (2009). Reactive power rescheduling with generator

ranking for voltage stability improvement. Energy Conversion and Management,
50, 1129–1135.

Singh, K. S. V. D., & Singh, D. (2009). Multiobjective optimization for DG planning
with load models. IEEE Transactions on Power Systems, 24, 427.

Suroso & Noguchi, T. (2010). A new three-level current-source PWM inverter and its
application for grid connected power conditioner. Energy Conversion and
Management, 51, 1491–1499.

Vilar Moreno, C., Amaris Duarte, H., & Usaola Garcia, J. (2002). Propagation of flicker
in electric power networks due to wind energy conversions systems. IEEE
Transactions on Energy Conversion, 267–272.

Xiong, H., Cheng, H., & Li, H. (2008). Optimal reactive power flow incorporating
static voltage stability based on multi-objective adaptive immune algorithm.
Energy Conversion and Management, 49, 1175–1181.


	Integration of renewable energy sources in smart grids by means of evolutionary optimization algorithms
	1 Introduction
	2 Reactive power injection from DG sources
	3 Reactive Power Planning formulation
	3.1 Objective function
	3.1.1 Single objective function
	3.1.2 Multiobjective function

	3.2 Constraints
	3.2.1 Equality constraints
	3.2.2 Inequality constraints


	4 Genetic algorithms
	4.1 Encoding
	4.2 Evaluation
	4.3 Selection
	4.4 Crossover
	4.5 Mutation

	5 Example
	5.1 Initial population
	5.2 Evaluation
	5.3 Selection
	5.4 Crossover operation
	5.5 Mutation
	5.6 New population
	5.7 Final solution

	6 Application case
	6.1 Maximizing the voltage stability
	6.2 A multiobjective approach: to increase voltage stability by maximizing the DG penetration level

	7 Conclusions
	Acknowledgements
	Appendix A 
	References


